
Calculating the Likelihood 
 
To summarize the calculations, presence/absence information for each cognate set is 

mapped onto the leaves of a tree. Next, ancestral character states are hypothesized at 

all internal nodes of the tree. The likelihood of this ancestral-state combination, which 

depends on substitution rate parameters, is calculated. The likelihood of each tree, for 

each cognate set, is the sum of the probabilities of all the possible ancestral-state 

combinations. The overall likelihood of each tree for all of the data can be calculated 

by taking the product of all the individual cognate-set likelihoods. If a tree has a 

relatively high likelihood score this means that, given the tree and the model of 

evolution, the data is a relatively likely outcome. The maximum likelihood (ML) tree 

is that tree or trees making the data most likely. It is natural to present the age of the 

Most Recent Common Ancestor (MRCA) of all leaf-languages in this ML tree as the 

“result” of an analysis. However, there are usually many trees with likelihood scores 

which are close to the likelihood of the ML tree. 

 

Bayesian inference, MCMC and Estimating Uncertainty 

 

It is easy to show that even when the observation model is an accurate description of 

cognate evolution there is a very high probability that the true tree will not coincide 

with the ML tree. For this reason, where feasible, it is preferable to report a 

confidence interval for the age of the MRCA which takes into account uncertainty in 

the reconstructed tree. We compute the total support for each possible MRCA age-

value by summing the likelihood over all trees with that MRCA age value. For this 

process to produce a meaningful confidence interval we must weight the trees 

correctly: we may posses a model of the process which gives rise to branching events 

in the tree - this model would extend the observation model to include both tree-

generation and character evolution; or we may use our subjective knowledge of more 

and less plausible trees to re-weight the sum of tree-likelihoods. The former case is 

essentially all observation-model, and is closely related to likelihood-based or 

frequentist inference; the latter is a variety of Bayesian inference and the weighting 

function, which represents a prior preference for some trees over others, is called the 



prior. Where no plausible model of the tree-formation process is available, we are 

obliged to make Bayesian inference, taking care to consider a range of priors, and 

choosing priors which represent various degrees of ignorance.  Bayes’ theorem 

expresses the posterior probability of a tree (the probability of the tree given the data 

and subjective prior knowledge) as the product of its likelihood score (the probability 

of the data given the tree) and its prior probability (a reflection of any prior 

knowledge about tree topology that is to be included in the analysis). The 

aforementioned weighted sum of likelihoods of trees of fixed MRCA-age, is therefore 

just the total posterior probability for that age. However, when we compute this sum 

we are confronted with an explosion in the number of possible tree topologies. For 

seven taxa there are 945 possible unrooted trees, for 10 taxa there are over 2 million 

trees, and for 20 taxa there are over 2 x 1020 trees.   

 

Evaluating the posterior probability analytically is almost always impractical. 

However, we can use Markov Chain Monte Carlo (MCMC) algorithms (Metropolis et 

al., 1953) to generate a sample of trees in which the frequency distribution of the 

sample is an approximation of the posterior probability distribution of the trees 

(Huelsenbeck et al. 2001). In other words, the more likely the tree, the more likely it 

is to appear in the sample distribution. This sample is used to estimate the sums we 

need. The MCMC algorithm is typically started from a random phylogeny. The 

algorithm works by proposing changes to the “current” tree and model parameters and 

accepting these changes with a probability that depends on the ratio of the proposed 

and current posterior probabilities. Remarkably, after a “burn-in” period, this 

algorithm generates trees in proportion to their posterior probability. So, a tree that is 

twice as probable given the data and the prior information will be sampled twice as 

often. The limitations of MCMC are well known. It is necessary to check that samples 

are representative of the posterior distribution. No convenient sufficient condition is 

available. We make multiple runs from randomly chosen initial conditions, and apply 

the checks discussed in Geyer (1992). For the synthetic data analyses, more cursory 

checks were applied (visual inspection of output traces) as the true tree is known, so 

convergence is not usually in doubt. 

 



Method 1 – Finite-sites Model 

 

The character evolution model 

The model used in Gray and Atkinson (2003; and Atkinson and Gray, in press[a, b]) 

is based on a restriction-site model of binary character evolution implemented in the 

programme MrBayes (Huelsenbeck and Ronquist, 2001). As described above, the 

binary characters in the data matrix represent the presence (1) or absence (0) of a 

particular cognate in a particular language. We can model the process of cognate gain 

and loss using a rate matrix representing the relative probabilities of all possible 

character-state changes. The rate matrix in Table 1 shows a simplified version of the 

Gray and Atkinson model. Each cell represents the relative probability of gaining or 

losing a cognate in any given time period. The model parameters are μ, the mean 

substitution rate, and π0 and π1, which represent the relative frequencies of 1’s (π1; 

cognate present) and 0’s (π0; cognate absent). The substitution rate is a parameter 

estimated in the MCMC analysis and the equilibrium frequency of 1’s and 0’s can be 

estimated from the frequency of 1’s and 0’s in the data. 

 

Table 1 – Rate matrix used for modelling lexical replacement in language evolution. 

This time-reversible model allows for unequal equilibrium frequencies of 1’s and 0’s 

(cognate presence and absence). The model parameters are μ (the mean substitution 

rate), and π0 and π1 (which represent the relative frequencies of 1’s and 0’s in the data 

matrix). 

 1 0 

1 - μπ0 μπ0 

0 μπ1 - μπ1 

 

 

Because there are just two states, 0 and 1, this model is  trivially time-reversible – if 

we follow a particular cognate over a long time evolving within a single language, the 

number  of times we see the state of the cognate change from 1 to 0 and 0 to 1 will be 

equal . We cannot tell the direction in which the cognate evolved from its history in a 

single language. This model allows a single cognate to appear in and disappear from a 

single language more than once over the course of time, allowing the model to mimic 



the effect of word-borrowing. The direction of time is not determined in a reversible 

model. As a consequence, we cannot determine the root of the tree from the data – we 

need to provide an outgroup as a root. For all the method 1 analyses reported here, 

trees were rooted with Hittite, consistent with independent linguistic analyses 

(Gamkrelidze and Ivanov, 1995; Rexova, Frynta and Zrzavy, 2003). The method of 

Nicholls & Gray (in press) predicts a Hittite outgroup. Moreover, Atkinson and Gray 

(in press[a, b]) found that the root point did not in any case affect age estimates 

significantly. Note that the lifetime 1/ μπ1 of the “absent” or 0-state (controlled by the 

rate uπ1 at which a 0 becomes a 1) need not equal the lifetime 1/ μπ0 of the “present” 

or 1-state (controlled by the rate μπ0  at which a 1 becomes a 0) for a cognate in a 

time-reversible model.  

  

A Gamma shape parameter was also added to allow for rate variation between words. 

The Gamma distribution provides a range of rate categories for the model to choose 

from when assigning rates to each cognate set. The distribution of these rates is 

determined by the Gamma shape parameter ().  can range from 0 to ∞. For small 

values of , most cognate sets evolve slowly, but a few can evolve at higher rates. As 

 increases, the distribution becomes more peaked and symmetrical around a rate of 1 

– i.e. rates become more equal (Swofford et al., 1996). As with the overall rate 

parameter,  was estimated from the data. An  value of 5 was observed, indicating 

moderate rate variation. 

 

Tree-building 

Method 1 uses MrBayes (Huelsenbeck and Ronquist, 2001) to perform Bayesian 

inference of phylogeny. MrBayes uses MCMC algorithms to sample trees distributed 

according to the posterior computed from the Method 1 observation model. After an 

initial ‘burn-in’ period, trees are sampled in proportion to their likelihood given the 

data. Each analysis generated 1.3 million trees from a random starting phylogeny. On 

the basis of an autocorrelation analysis only every 10,000th tree was sampled to 

ensure that consecutive samples were reasonably independent. A burn-in period of 

300,000 trees for each run was used to avoid sampling trees before the run had 

reached convergence. Log-likelihood plots and an examination of the post burn-in tree 

topologies using the TreeSet Visualization module (Klinger, 2002) for Mesquite 



(Maddison & Maddison, 2002) demonstrated that the runs had indeed reached 

convergence by this time. Most analyses were repeated 10 times from different 

random starting trees to produce a total of 1000 trees in each sample, all rooted with 

Hittite. The branch between Hittite and the rest of the tree was split at the root such 

that half its length was assigned to the Hittite branch and half to the remainder of the 

tree - divergence time estimates were found to be robust to threefold alterations of this 

allocation. 

Estimating Dates 

A likelihood approach allows us to account for rate variation between words using a 

Gamma distribution. We can also account for rate variation between lineages and 

through time by relaxing the assumption of a strict glottoclock. Rate-smoothing 

algorithms from biology attempt to model rate variation across a phylogeny and thus 

estimate divergence times without assuming constant rates. One such approach is the 

“penalized-likelihood” model (Sanderson 2002a) of rate smoothing, which allows for 

rate variation between lineages while incorporating a “roughness penalty” that costs 

the model more if rates vary excessively from branch to branch. In a biological 

context, Sanderson (2002a) has shown that the penalized-likelihood optimization 

procedure performs significantly better under conditions of rate heterogeneity than 

procedures that assume a constant rate of evolution.  

  

 We can apply the same methods to linguistic data. Using MrBayes we produced a 

distribution of trees with branch-lengths proportional to the inferred amount of 

evolutionary change. Known divergence times based on historically attested dates 

were then used to calibrate rates of change across each tree. For example, we know 

from historical information that the Anglo-Saxons began to settle in Britain in A.D. 

449. This would suggest that the English lineage split from the other West Germanic 

languages at some point during the fifth century A.D. We can constrain the age of this 

node on the tree accordingly. Similarly, we can constrain the age of extinct languages 

based on dates associated with the various source texts. For example, we know that 

Hittite was spoken between 3,200 and 3,700 years ago and we can constrain the age 

of this node on each tree.  

 



The 87 languages in the modified Dyen et al. (1997) data set allowed for 11 internal 

clade constraints (see appendix I). Terminal nodes representing contemporary 

languages were set to 0 years whilst 3 extinct languages (Hittite and Tocharian A & 

B) were constrained in accordance with estimated ages of the source texts. For the 24 

languages in the Ringe et al. (2002) data, 12 internal node constraints were available, 

whilst 20 extinct languages were constrained in accordance with estimated ages of the 

source texts (see appendix II). Sanderson’s (2002a) penalized-likelihood algorithm, as 

implemented in r8s (Sanderson, 2002b), was then used to smooth rates of evolution 

across each tree and to calculate divergence times. This procedure was repeated on all 

of the trees in the MCMC Bayesian sample distribution. Interestingly, high smoothing 

factors were found to fit the data best, suggesting that the process of evolution is in 

fact relatively tightly constrained. The result is a distribution of age estimates for 

various Indo-European language divergence events. The distribution of divergence 

times at the root can be used to create a confidence interval for the age of Indo-

European. 

 

Method 2 – Stochastic-Dollo Model 

 

Dollo’s Law states that traits can evolve only once (Farris, 1977).  In this context, we 

treat cognates as traits and assume that the same cognate cannot be independently 

created in different languages (through time or space).  This assumption is equivalent 

to asserting that the cognate data is homoplasy free (c.f. Ringe et al., 2002).  Based on 

this assumption, we outline a stochastic model of language change appropriate to the 

cognate data described in section 3. 

 

The model allows language change to occur in three different ways: words (and 

corresponding cognates sets) are created, words are lost, and words reproduce (when 

languages split, forming two child copies of a parent language).  We assume that 

words are created in any given language at rate λ.  When a word is created, it falls into 

a new cognate class, so word creation and cognate class creation are synonymous.  If 

there are k languages extant at time t, new cognates are created at total rate kλ.   

 



Each word is lost from a given language independently at rate μ.  If at time t, there are 

k languages and language i contains li words, word death occurs at a total rate of 

μ(l1+l2+…+lk).    

 

Each language splits at rate θ.  When a language splits, two child copies of the 

language are made and the parent language dies.  At the time of splitting, the child 

languages are indistinguishable from the parent language and thereafter evolve in 

exactly the same way as the parent language did.  If there are k languages at time t, 

language splitting occurs at total rate kθ. 

 

We assume that the times between all events causing language change are 

exponentially distributed and that all rates – the cognate birth rate, λ, the cognate loss 

rate, μ, and the language splitting rate, θ – are constant across time and space.  We 

assume also that all languages and cognates evolve independently.   

 

The data described in section 2 is collected in such a way that cognates which are 

present in no languages or only one language at the time of collection are not 

recorded. Thus the observed cognate birth rate λ* is different from the actual cognate 

birth rate λ since words must be born and survive into at least two languages in order 

to be observed.  This data thinning process may result in the birth times of cognates in 

the data being skewed heavily towards the leaves of the tree.  This effect is accounted 

for in the likelihood calculation for a given tree, the details of which are given in 

Nicholls and Gray (in press).  

Inference for the Stochastic-Dollo model is made within a Bayesian framework and 

the data is analysed using a MCMC algorithm implemented in Matlab by two of the 

authors (GN and DW).  The relevant software, called TraitLab, can be downloaded 

from (aitken.math.auckland.ac.nz/~nicholls/TraitLab/). 

 



Age constraint Tables 

 

 

Tabel 2 Dyen et al. data age constraints - from Gray and Atkinson (2003) - Age 

constraints for the Dyen et al. (1997) data set, used to calibrate the divergence time 

calculations on the basis of known historical information. Terminal node constraints 

representing ancient languages are shown in italics. 

 

Calibration Age constraint 

Iberian-French 450AD-800AD 

Italic-Romanian 150AD-300AD 

North/West Germanic 50AD-250AD 

Welsh/Breton 400AD-550AD 

Irish/Welsh before 300AD 

Indic before 200BC 

Iranian before 500BC 

Indo-Iranian before 1,000BC 

Slavic before 700AD 

Balto-Slavic 1,400BC-100AD 

Greek split before 1,500BC 

Tocharic 140BC-350AD 

Tocharian A & B 500AD-750AD 

Hittite 1,800BC-1,300BC 



Table 3 - Ringe et al data age constraints - Age constraints for the Ringe et al. 

(2002) data set, used to calibrate the divergence time calculations on the basis of 

known historical information. Terminal node constraints representing ancient 

languages are shown in italics. 

Calibration Age constraint 

Italic before 800BC 

Germanic 750BC-250BC 

North-West Germanic 50AD-250AD 

West Germanic 400AD-500AD 

Celtic 650BC-300AD 

Indic before 200BC 

Iranian before 500BC 

Indo-Iranian before 1,000BC 

Baltic 600AD-700AD 

Balto-Slavic 1,400BC-400BC 

Greek split before 1,500BC 

Tocharic 140BC-350AD 

Vedic 1,500BC-800BC 

Old Persian 600BC-300BC 

Avestan 600BC-400BC 

Old Prussian 1,250AD-1,600AD 

Old Chruch Slavonic 900AD-1,100AD 

Old High German 850AD-1,050AD 

Old English 900AD-1,100AD 

Old Norse 1,150AD-1,350AD 

Gothic 300AD-400AD 

Armenian 400AD-800AD 

Greek 500BC-300BC 

Latin 200BC-100AD 

Oscan 400BC-50BC 

Umbrian 300BC-50BC 

Old Irish 600AD-900AD 

Tocharian A & B 500AD-750AD 



Lycian 500BC-200BC 

Luvian 1,700BC-1,200BC 

Hittite 1,700BC-1,200BC 

 

 

 



Ringe et al (2002) Consensus Network 

 

One problem with using consensus trees, is that they cannot display the strength of 

evidence for conflicting clades. For example, we may be able to show that the 

Germanic languages group with the Celtic languages 42% of the time, but we cannot 

simultaneously show that 38% of the time the Germanic languages group with the 

Italic or Balto-Slavic languages, even though this may be very interesting. One way of 

summarizing a distribution of trees without losing this information is to display 

conflicting clades or ‘splits’ simultaneously. We can do this using consensus networks 

(Holland and Moulton, 2003). Figure 1 shows the RF1 distribution of trees 

summarized as a consensus network displaying all those clades with greater than 10% 

support. Each edge or ‘split’ separating one set of languages from another 

corresponds to a clade. This clearly shows the lack of resolution at the base of the tree 

– the box like structures in the centre of the figure indicate incompatible clades in the 

sample distribution of trees. This picture is consistent with acknowledged 

uncertainties, such as the position of Albanian. It is this uncertainty in the branching 

structure that we can integrate out by estimating divergence times across the sample 

distribution of trees. 

 



 

Figure 1 - Consensus network from the initial Bayesian MCMC sample of 1,000 trees 

based on the Ringe et al (2002) data, constructed using SplitsTree (Huson, 1998). 

Values express percentage support for some of the splits. A threshold of 10% was 

used to draw this splits graph – i.e. only those splits occurring in at least 10% of the 

observed trees are shown in the graph. Branch lengths represent the median number of 

reconstructed substitutions per site across the sample distribution. 
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